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Why Develop a Fluid Reduced Order Model (ROM)?
CFD modeling of unsteady

3D flows is expensive!

A Reduced Order Model (ROM) is
a surrogate numerical model that

aims to capture the essential
dynamics of a full numerical model

but with far fewer dofs.

Applications in Fluid Dynamics:
Predictive modeling across a parameter
space (e.g., aeroelastic flutter analysis).

System modeling for active flow control.

Long-time unsteady flow analysis, e.g.,
fatigue of a wind turbine blade under
variable wind conditions.
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Motivation for Numerical Analysis of ROMs

Use of ROMs in predictive applications raises
questions about their stability & convergence.

Projection ROM approach is an alternative discretization of the
governing PDEs.
Desired numerical properties of a ROM discretization:

Consistency (with continuous PDEs): loosely speaking, a ROM
CAN be consistent with respect to the full simulations used to
generate it.
Stability: numerical stability is NOT in general guaranteed a priori
for a ROM!
Convergence: consistency and stability are required.

This talk focuses on how it is possible to
construct a Galerkin ROM that is stable a priori
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Step 1: Constructing the Modes

High-Fidelity
CFD Simulations:

Snapshot 1

Snapshot 2

...

Snapshot N

Fluid Modal
Decomposition

(POD):

u =
∑
k

ak(t)φk(x)

Step 1

Galerkin Projection
of Fluid PDEs:

(
φj ,

∂u

∂t
+∇ · F(u)

)
= 0

“Small”
ROM
ODE

System:

ȧk = f(a1, ..., aM )

Step 2
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Proper Orthogonal Decomposition (POD), a.k.a.
“Method of Snapshots”

Step 1.1: Take N snapshots from full simulation: {uk(x)}Nk=1
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Proper Orthogonal Decomposition (POD), a.k.a.
“Method of Snapshots”

Step 1.1: Take N snapshots from full simulation: {uk(x)}Nk=1

Step 1.2: Compute a reduced POD basis {φi}Mi=1 with M << N s.t. the
energy in the projection of snapshots onto span{φi} is maximized:

max
φ∈H(Ω)

〈(u,φ)2〉
||φ||2 (1)

where (·, ·) ≡ inner product
〈·〉 ≡ time or ensemble averaging operator
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(1)

where (·, ·) ≡ inner product
〈·〉 ≡ time or ensemble averaging operator

R ≡ 〈uk(uk,φ)〉

Solution to (1) is the set of M eigenfunctions {φi}Mi=1

corresponding to the M largest eigenvalues λ1 ≥ · · · ≥ λM of R
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Properties of the POD Basis

POD basis {φi}Mi=1 is orthonormal: (φi,φj) = δij .

Average energy of projection of the snapshot ensemble onto the ith

mode is given by:
〈(uk,φi)2〉 = λi

⇒ energy of set {φi}Mi=1 =

M∑
j=1

λj

Truncated POD basis {φi}Mi=1 describes more energy (on average) of
the ensemble than any other linear basis of the same dimension.

Given M << N modes, ROM solution can be represented as a linear
combination of these modes:

uM (x, t)︸ ︷︷ ︸
ROM

solution

=

M∑
i=1

ai(t) φi(x) (2)
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Galerkin Projection of (Continuous!) Equations

Governing System of PDEs:

∂u

∂t
= Lu +N2(u,u) +N3(u,u,u) (3)
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∂t
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Step 2.1: Project (3) onto the modes φj in inner product (·, ·)(
φj ,

∂u

∂t

)
= (φj ,Lu) + (φj ,N2(u,u)) + (φj ,N3(u,u,u)) (4)
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Step 2.2: Substitute the modal decomposition uM =
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k=1 ak(t)φk(x)

→ u into (4)

ȧk(t) =
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l=1 al(φk,L(φl)) +

∑M
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+
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ȧk(t) =
M∑
l=1

al (φk,L(φl))︸ ︷︷ ︸
≡Kkl

+
∑M
l,m=1 alam(φk,N2(φl,φm))

+
∑M
l,m,n=1 alaman (φk,N3(φl,φm,φn))

(5)

Irina Kalashnikova1,2 , Matthew F. Barone3 A Stable ROM for Compressible Flow 11/ 36



Motivation Overview of the POD/Galerkin Method for Model Reduction A Stable Galerkin ROM for Compressible Flow Numerical Examples Summary & Further Work References AcknowledgmentsStep 1: Constructing the POD Modes Step 2: Galerkin Projection

Continuous vs. Discrete Projection Approach
DISCRETE APPROACH

Governing Equations
ut = Lu
↓

CFD Model
u̇N = ANuN

↓

Discrete Modal Basis Φ
↓

Projection of CFD Model
(Matrix Operation)

↓

ROM
ȧ = ΦTANΦa

CONTINUOUS APPROACH

Governing Equations
ut = Lu
↓

CFD Model
u̇N = ANuN

↓

Continuous Modal Basis∗ φj(x)

↓

Projection of Governing Equations
(Numerical Integration)

↓

ROM
ȧj = (φj ,Lφk)ak

∗Continuous functions space is defined using finite elements.
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Stability Definitions

Practical Definition: Numerical solution does not “blow up” in finite
time.
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Stability Definitions

Practical Definition: Numerical solution does not “blow up” in finite
time.

More Precise Definition: Numerical discretization does not introduce
any spurious instabilities inconsistent with natural instability modes
supported by the governing continuous PDEs.

Analyzed with the Energy Method:
uses an equation for the evolution of numerical solution

“energy” to determine stability

||uN (x, t)||E ≡
{

energy of uN in norm || · ||E
induced by inner product (·, ·)E

}
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uses an equation for the evolution of numerical solution

“energy” to determine stability

||uN (x, t)||E ≡
{

energy of uN in norm || · ||E
induced by inner product (·, ·)E

}

||uN (x, t)||E
?

≤ eβt||uN (x, 0)||E , β ∈ R
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3D Linearized Compressible Euler Equations

Useful for aero-elasticity, aero-acoustics, flow instability analysis.

Linearization of Full Compressible Euler Equations

qT (x, t) ≡
(
u1 u2 u3 ζ p

)
≡ q̄T (x)︸ ︷︷ ︸

mean

+q′T (x, t)︸ ︷︷ ︸
fluctuation

∈ R5

⇒ ∂q′

∂t
+ Ai

∂q′

∂xi
+ Cq′ = 0 (6)

where

A1 =


ū1 0 0 0 ζ̄
0 ū1 0 0 0
0 0 ū1 0 0
−ζ̄ 0 0 ū1 0
γp̄ 0 0 0 ū1

 , A2 =


ū2 0 0 0 0
0 ū2 0 0 ζ̄
0 0 ū2 0 0
0 −ζ̄ 0 ū2 0
0 γp̄ 0 0 ū2



A3 =


ū3 0 0 0 0
0 ū3 0 0 0
0 0 ū3 0 ζ̄
0 0 −ζ̄ ū3 0
0 0 γp̄ 0 ū3

 , C =



∂ū1
∂x1

∂ū1
∂x2

∂ū1
∂x3

∂p̄
∂x1

0

∂ū2
∂x1

∂ū2
∂x2

∂ū2
∂x3

∂p̄
∂x2

0

∂ū3
∂x1

∂ū3
∂x2

∂ū3
∂x3

∂p̄
∂x3

0

∂ζ̄
∂x1

∂ζ̄
∂x2

∂ζ̄
∂x3

−∇ · ū 0

∂p̄
∂x1

∂p̄
∂x2

∂p̄
∂x3

0 γ∇ · ū


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Symmetrized Compressible Euler Equations &
Symmetry Inner Product

Energy stability can be proven following “symmetrization”
of the linearized compressible Euler equations.

Linearized hyperbolic compressible Euler system is “symmetrizable”.

Pre-multiply equations by symmetric positive definite matrix:

H =


ρ̄ 0 0 0 0
0 ρ̄ 0 0 0
0 0 ρ̄ 0 0
0 0 0 α2γρ̄2p̄ ρ̄α2

0 0 0 ρ̄α2 1+α2

γp̄

 ⇒ H
∂q′

∂t
+ HAi

∂q′

∂xi
+ HCq′ = 0

H is called the “symmetrizer” of the system: HAi are all symmetric.

Define the “symmetry” inner product and “symmetry” norm:

(q′(1),q′(2))(H,Ω) ≡
∫

Ω

[q′(1)]THq′(2)dΩ, ||q′||(H,Ω) ≡ (q′,q′)(H,Ω)

(7)
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Stability in the Symmetry Inner Product

d
dt ||q

′||2(H,Ω) = −
∫
Ω

[q′]TH
[
Ai

∂q′
∂xi

+ Cq′
]
dΩ

= −
∫
∂Ω

[q′]THAiniq
′dS +

∫
Ω

[q′]T
(

∂
∂xi

(HAi)−HC−CTH
)
q′dΩ

= −
∫
∂Ω

[q′]THAiniq
′dS +

∫
Ω

[q′]TH−T/2BHT/2q′dΩ

≤ −
∫
∂Ω

[q′]THAiniq
′dS + β

(
q′,q′

)
(H,Ω)

≤ β||q′||2(H,Ω) if
∫
∂Ω

[q′]THAiniq
′dS ≥ 0 (well-posed BCs)

where β is an upper bound on the eigenvalues of

B ≡ H
−T/2 ∂(HAi)

∂xi
H
−1/2 −H

1/2CH−1/2 − (H
1/2CH−1/2

)
T

Irina Kalashnikova1,2 , Matthew F. Barone3 A Stable ROM for Compressible Flow 17/ 36



Motivation Overview of the POD/Galerkin Method for Model Reduction A Stable Galerkin ROM for Compressible Flow Numerical Examples Summary & Further Work References AcknowledgmentsStability Definitions Equations for Compressible Flow Stability-Preserving “Symmetry” Inner Product for Compressible Flow

Stability in the Symmetry Inner Product

d
dt ||q

′||2(H,Ω) = −
∫
Ω

[q′]TH
[
Ai

∂q′
∂xi

+ Cq′
]
dΩ

= −
∫
∂Ω

[q′]THAiniq
′dS +

∫
Ω

[q′]T
(

∂
∂xi

(HAi)−HC−CTH
)
q′dΩ

= −
∫
∂Ω

[q′]THAiniq
′dS +

∫
Ω

[q′]TH−T/2BHT/2q′dΩ

≤ −
∫
∂Ω

[q′]THAiniq
′dS + β

(
q′,q′

)
(H,Ω)

≤ β||q′||2(H,Ω) if
∫
∂Ω

[q′]THAiniq
′dS ≥ 0 (well-posed BCs)

where β is an upper bound on the eigenvalues of

B ≡ H
−T/2 ∂(HAi)

∂xi
H
−1/2 −H

1/2CH−1/2 − (H
1/2CH−1/2

)
T

Exact solutions to the linearized Euler equations satisfy:

||q′(x, t)||(H,Ω) ≤ eβt||q′(x, 0)||(H,Ω)
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Stability in the Symmetry Inner Product

d
dt ||q

′||2(H,Ω) = −
∫
Ω

[q′]TH
[
Ai

∂q′
∂xi

+ Cq′
]
dΩ

= −
∫
∂Ω

[q′]THAiniq
′dS +

∫
Ω

[q′]T
(

∂
∂xi

(HAi)−HC−CTH
)
q′dΩ

= −
∫
∂Ω

[q′]THAiniq
′dS +

∫
Ω

[q′]TH−T/2BHT/2q′dΩ

≤ −
∫
∂Ω

[q′]THAiniq
′dS + β

(
q′,q′

)
(H,Ω)

≤ β||q′||2(H,Ω) if
∫
∂Ω

[q′]THAiniq
′dS ≥ 0 (well-posed BCs)

where β is an upper bound on the eigenvalues of

B ≡ H
−T/2 ∂(HAi)

∂xi
H
−1/2 −H

1/2CH−1/2 − (H
1/2CH−1/2

)
T

Exact solutions to the linearized Euler equations satisfy:

||q′(x, t)||(H,Ω) ≤ eβt||q′(x, 0)||(H,Ω)

It turns out that the Galerkin approximation q′M =
∑M
i=1 ak(t)φk(x) satisfies the same

energy expression as for the continuous equations:

||q′M (x, t)||(H,Ω) ≤ eβt||q′M (x, 0)||(H,Ω)

i.e., it is stable.
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Stability in the Symmetry Inner Product
d
dt ||q

′||2(H,Ω) = −
∫
Ω

[q′]TH
[
Ai

∂q′
∂xi

+ Cq′
]
dΩ

= −
∫
∂Ω

[q′]THAiniq
′dS +

∫
Ω

[q′]T
(

∂
∂xi

(HAi)−HC−CTH
)
q′dΩ

= −
∫
∂Ω

[q′]THAiniq
′dS +

∫
Ω

[q′]TH−T/2BHT/2q′dΩ

≤ −
∫
∂Ω

[q′]THAiniq
′dS + β

(
q′,q′

)
(H,Ω)

≤ β||q′||2(H,Ω) if
∫
∂Ω

[q′]THAiniq
′dS ≥ 0 (well-posed BCs)

where β is an upper bound on the eigenvalues of

B ≡ H
−T/2 ∂(HAi)

∂xi
H
−1/2 −H

1/2CH−1/2 − (H
1/2CH−1/2

)
T

Exact solutions to the linearized Euler equations satisfy:

||q′(x, t)||(H,Ω) ≤ eβt||q′(x, 0)||(H,Ω)

It turns out that the Galerkin approximation q′M =
∑M
i=1 ak(t)φk(x) satisfies the same

energy expression as for the continuous equations:

||q′M (x, t)||(H,Ω) ≤ eβt||q′M (x, 0)||(H,Ω)

i.e., it is stable.

For uniform base flow, the Galerkin scheme satisfies the strong stability estimate:

||q′M (x, t)||(H,Ω) ≤ ||q′M (x, 0)||(H,Ω)
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Stability in the Symmetry Inner Product (cont’d)

Stability analysis dictates that we use the symmetry inner
product

(q′(1),q′(2))(H,Ω) ≡
∫

Ω
[q′(1)]THq′(2)dΩ

=
∫

Ω

[
ρ̄u′(1) · u′(2) + α2γρ̄2ζ′(1)ζ′(2)

+ 1+α2

γp̄
+ α2ρ̄(ζ′(2)p′(1) + ζ′(1)p′(2))

]
dΩ

to compute the POD modes and perform the Galerkin projection.

Practical Implication of Stability Analysis

Symmetry inner product ensures that any “bad” modes will not
introduce spurious non-physical numerical instabilities into the
Galerkin approximation.

Galerkin projection step is stable for any basis in the symmetry
inner product!
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Steps to Obtain a Stable Compressible Fluid ROM

Galerkin-project the equations in the symmetry inner product (7):(
φj ,

∂q′M
∂t

)
(H,Ω)

+

(
φj ,Ai

∂q′M
∂xi

)
(H,Ω)

+ (φj ,Cq′M )(H,Ω) = 0 (8)
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Steps to Obtain a Stable Compressible Fluid ROM

Galerkin-project the equations in the symmetry inner product (7):(
φj ,

∂q′M
∂t

)
(H,Ω)

+

(
φj ,Ai

∂q′M
∂xi

)
(H,Ω)

+ (φj ,Cq′M )(H,Ω) = 0 (8)

Integrate second term in (8) by parts(
φj ,

∂q′M
∂t

)
(H,Ω)

=

∫
Ω

[
∂

∂xi
[φ
T
j HAi]− φ

T
j HC

]
q
′
MdΩ−

∫
∂Ω

φ
T
j HAn q′M dS
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Steps to Obtain a Stable Compressible Fluid ROM

Galerkin-project the equations in the symmetry inner product (7):(
φj ,

∂q′M
∂t

)
(H,Ω)

+

(
φj ,Ai

∂q′M
∂xi

)
(H,Ω)

+ (φj ,Cq′M )(H,Ω) = 0 (8)

Integrate second term in (8) by parts and apply boundary conditions:(
φj ,

∂q′M
∂t

)
(H,Ω)

=

∫
Ω

[
∂

∂xi
[φ
T
j HAi]− φ

T
j HC

]
q
′
MdΩ−

∫
∂Ω

φ
T
j HAini q′M dS

Insert boundary conditions into boundary integrals (weak implementation)

∗ Energy stability is maintained if the boundary conditions are such that∫
∂Ω

φTj HAiniq
′
MdS ≥ 0.
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Steps to Obtain a Stable Compressible Fluid ROM

Galerkin-project the equations in the symmetry inner product (7):(
φj ,

∂q′M
∂t

)
(H,Ω)

+

(
φj ,Ai

∂q′M
∂xi

)
(H,Ω)

+ (φj ,Cq′M )(H,Ω) = 0 (8)

Integrate second term in (8) by parts and apply boundary conditions:(
φj ,

∂q′M
∂t

)
(H,Ω)

=

∫
Ω

[
∂

∂xi
[φ
T
j HAi]− φ

T
j HC

]
q
′
MdΩ−

∫
∂Ω

φ
T
j HAini q′M dS

Insert boundary conditions into boundary integrals (weak implementation)

∗ Energy stability is maintained if the boundary conditions are such that∫
∂Ω

φTj HAiniq
′
MdS ≥ 0.

Substitute modal decomposition q′M =
∑
k ak(t)φk(x) to obtain an

M ×M linear dynamical system of the form ȧ = Ka
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Numerical Implementation of Fluid ROM

So far, all analysis is for continuous and smooth basis functions, and
exact evaluation of inner product integrals.

Stability-Preserving Discrete Implementation:

Define solution snapshots and POD basis functions using a piecewise
smooth finite element representation:

q′e
h
(x) =

Nn∑
i=1

Ni(x)q′i

Apply Gauss quadrature rules
(∫

Ω
f(x)dΩ =

∑nquad

j=1 ωjf(xj)
)

of
sufficient accuracy to exactly integrate the inner products:

(u,v)(H,Ωe) =

∫
Ωe

[u]THvdΩe = [uhe ]TWevhe

where we
klI with we

kl =
∑nquad

j=1 Hh
eN

e
k(xj)N

e
l (xj)ωj is the (k, l)th block

of We.
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Numerical Implementation of Fluid ROM (cont’d)

AERO-F was used to generate the CFD simulations, using
unstructured tetrahedral meshes.
Piecewise-linear finite elements were used to represent
snapshot data and POD modes
H was taken to be piecewise constant over each element.
A computer code was written that reads in the snapshot data
written by AERO-F, assembles the necessary finite element
representation of the snapshots, computes the numerical
quadrature for evaluation of inner products, and projects the
equations onto the modes.
ROMs integrated in time using RK-4 scheme with same time
step that was used in the CFD computation.
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Numerical Stability & Convergence Tests

To test a posteriori the stability of a ROM dynamical system
ȧ = Ka, check the Lyapunov condition:

maxiR{λi(K)} ≤ 0?

To test a posteriori the convergence of a ROM solution
q′M → q′CFD as M →∞, check:

(q′M ,φj)(H,Ω) =
(∑M

i=1 aiφi,φj
)

(H,Ω)
= aj → (q′CFD,φj)(H,Ω)?

〈||q′M − q′exact||(H,Ω)〉 → 〈||q′CFD − q′exact||(H,Ω)〉?
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Test Case 1: Purely Random Basis

Uniform base flow: physically stable to any linear disturbance.

Each mode is a random disturbance field that decays to 0 at the domain
boundaries.

Model problem for modes dominated by numerical error: extreme case
of “bad” modes.
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Test Case 2: 1D Acoustic Pressure Pulse
1D acoustic pressure pulse prescribed as the initial condition in
Ω = (0, 20)× (−5, 5)× (0, 1):

p′|t=0 = −ρ̄c̄e−(x−5)2

, u′1|t=0 = u′3|t=0 = 0

Uniform base flow, M∞ ≡ ū/c̄ = 0.5 in the x–direction (pulse
propagates in x-direction with velocity ū+ c̄).
Slip wall boundary conditions applied on constant y and z
boundaries.
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POD Modes for 1D Acoustic Pressure Pulse Example
CFD simulation run until Ttot = 5.25 (non-dimensional time) using 512
time steps.

Snapshots taken every 8 time steps (N = 64 snapshots).

M = 4 POD modes captured 85.5% of energy; M = 8 POD modes
captured 99.5% of total ensemble energy.
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Stability for 1D Acoustic Pressure Pulse Example

Four Galerkin schemes:

1 Symmetry inner
product with BCs.

2 Symmetry inner
product without BCs.

3 L2 inner product with
BCs.

4 L2 inner product
without BCs.

Only the symmetry inner product with
BCs produces a stable ROM for all M(

maxiR{λi(K)} < 10−9
)
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Convergence of the ROM for the 1D Acoustic
Pressure Pulse Example

Convergence check:

q′M =
∑M
i=1 ai(t) φi(x)

?

ΠMq′CFD =
∑M
i=1

(
q′CFD,φi

)
(H,Ω) φi(x)

Figure shows symmetry ROM (with BCs) coefficients ai vs.
(q′CFD,φi)(H,Ω) [- - 4 mode ROM; – 8 mode ROM; ◦ CFD solution].

Symmetry ROM (with BCs) appears to be convergent as the number of
modes increases.
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Test Case 3: 2D Pressure Pulse

Reflection of cylindrical Gaussian pressure pulse in
Ω = (0, 20)× (−5, 5)× (0, 1):

p′|t=0 = e−(x−10)2−(y+1)2

, u′1|t=0 = u′2|t=0 = u′3|t=0 = 0

Uniform base flow, M∞ = 0.25 in x–direction.
Slip wall boundary conditions applied on constant y and z
boundaries.
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Results for the 2D Pressure Pulse Example

CFD simulation run until Ttot = 6.4 (non-dimensional time) using 624
time steps.
Snapshots taken every 4 time steps starting at time t = t0 = 0.57.
6 mode basis captures 97.4% of total ensemble energy.
Good qualitative agreement between CFD solution and 6 mode
symmetry ROM (with BCs) on large scale.
Excellent agreement between CFD solution and 14 mode symmetry
ROM (with BCs).
Symmetry ROM (with BCs) is stable – vs. L2 ROM, which experienced
instability when more than 6 or 7 modes were used.

Pressure contours at t− t0 = 5.0.

CFD 6 mode ROM 14 mode ROM
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Convergence of the ROM for the 2D Pressure Pulse
Example

ai vs. (q′CFD,φi)(H,Ω) for M = 12
(– 12 mode ROM; ◦ CFD solution)

Time-average error of the symmetry
ROM solution as a function of M , com-
pared with the time-average error in the
CFD solution

Tests demonstrate numerically the convergence of the symmetry ROM
with BCs.
For M ≥ 12, ROM gives solution trajectory that is slightly closer to exact
solution than the CFD solution.
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Summary

A Galerkin ROM in which the continuous equations are projected
onto the modal basis in a continuous inner product is proposed.
For this continuous Galerkin projection approach, the choice of
inner product is crucial to stability.
For linearized, compressible flow, Galerkin projection in the
“symmetry” inner product leads to an approximation that is
numerically stable for any choice of basis.
A weak enforcement of the boundary conditions preserves
stability, provided they are well-posed.
A numerical implementation using finite elements that preserves
stability is presented.
Numerical stability of some POD/Galerkin ROMs constructed
using this scheme is examined on several model problems.
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Further Work

A structure ROM governed by the non-linear plate equations was
also developed (Segalman et al.).
ROM convergence was examined mathematically, and a priori
error estimates for the ROM solution error were derived
(Kalashnikova & Barone 2010 in press).
Extension of symmetry inner product methods to non-linear
equations using an interpolation procedure to handle efficiently
the non-linear terms (e.g., “best points interpolation procedure”
of Peraire, Nguyen, et al.).
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